How do you integrate int 1/(x^2sqrt(16x^2-9))∫1x2√16x2−9 by trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Ratnaker Mehta Mar 3, 2018 sqrt(16x^2-9)/(9x)+C√16x2−99x+C. Explanation: Suppose that, I=int1/(x^2sqrt(16x^2-9))dx=int1/(x^2sqrt{(4x)^2-3^2})dxI=∫1x2√16x2−9dx=∫1x2√(4x)2−32dx. We subst. 4x=3secy," so that, "4dx=3secytanydy4x=3secy, so that, 4dx=3secytanydy. :. I=int1/{(3/4*secy)^2sqrt(9sec^2y-9)}*(3/4*secytany)dy, =16/9*1/4int1/(sec^2ytany)*secytanydy, =4/9int1/secydy, =4/9intcosydy, =4/9siny, =4/9sqrt(1-cos^2y), =4/9sqrt(1-1/sec^2y), =4/9sqrt{1-1/(4/3*x)^2}, =4/9sqrt{1-9/(16x^2)}. rArr I=sqrt(16x^2-9)/(9x)+C. Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 4675 views around the world You can reuse this answer Creative Commons License