How do I find the integral of f(x)=sec^5(x)?

1 Answer
Mar 8, 2018

int sec^5xdx = (2sec^3xtanx + 3secxtanx + 3 ln abs(secx+tanx))/8 +C

Explanation:

Note that in general for any n >=1:

sec^(2n+1) x = sec^(2n-1)xsec^2x

and:

sec^2x = d/dx tanx

so we can integrate by parts:

int sec^(2n+1)xdx = int sec^(2n-1)d(tanx)

int sec^(2n+1)xdx = sec^(2n-1)xtanx - int tanx d(sec^(2n-1)x)

int sec^(2n+1)xdx = sec^(2n-1)xtanx - (2n-1)int tan^2xsec(2n-1)x

Use now the trigonometric identity:

tan^2x = sec^2x -1

to get:

int sec^(2n+1)xdx = sec^(2n-1)xtanx + (2n-1)int (1-sec^2x)sec^(2n-1)x

and using the linearity of the integral:

int sec^(2n+1)xdx = sec^(2n-1)xtanx + (2n-1)int sec^(2n-1)xdx- (2n-1) int sec^(2n+1)xdx

the integral now appears on both sides and we can solve for it:

2nint sec^(2n+1)xdx = sec^(2n-1)xtanx + (2n-1)int sec^(2n-1)xdx

int sec^(2n+1)xdx = (sec^(2n-1)xtanx)/(2n) + (2n-1)/(2n)int sec^(2n-1)xdx

So, for n=2:

int sec^5xdx = (sec^3xtanx)/4 + 3/4int sec^3xdx

and for n=1

int sec^3xdx = (secxtanx)/2 + 1/2int secxdx

Now:

int secx dx = int secx (secx+tanx)/(secx+tanx) dx

int secx dx = int (sec^2x+secxtanx)/(secx+tanx) dx

int secx dx = int (d(secx+tanx))/(secx+tanx)

int secx dx = ln abs(secx+tanx) +C

Putting the partial results together:

int sec^5xdx = (2sec^3xtanx + 3secxtanx + 3ln abs(secx+tanx))/8 +C