What is int 1/(sqrt[x]*sqrt[4-x]) dx?

2 Answers
Apr 6, 2018

2sin^(-1)(sqrtx/2)+c

Explanation:

I=int 1/(sqrt[x]*sqrt[4-x]) dx?

substitute u=sqrtx/2=>x=4u^2

=>du=1/4x^(-1/2)

:. dx=4sqrtxdu

I=int1/(cancel(sqrtx)(sqrt(4-4u^2)))4cancel(sqrtx)du

I=int4/(2sqrt(1-u^2))du

=2int(du)/(sqrt(1-u^2))

this is astandard integral

=2sin^(-1)u+c

=2sin^(-1)(sqrtx/2)+c

Apr 6, 2018

=-2sin^-1(sqrt(4-x)/2)+C

Explanation:

We know that,

(I)color(red)(int1/sqrt(a^2-x^2)dx=sin^-1(x/a)+c

Here,

I=int1/(sqrtx*sqrt(4-x))dx

Let, sqrt(4-x)=u=>4-x=u^2

i.e. x=4-u^2=>dx=-2udu

So,

I=int(-2u)/(sqrt(4-u^2)*u)du

=-2int1/sqrt(2^2-u^2)du...toApply (I)

=-2sin^-1(u/2)+C,where,u=sqrt(4-x)

=-2sin^-1(sqrt(4-x)/2)+C