How do you integrate ∫1√x(1+x) by trigonometric substitution?
1 Answer
Sep 11, 2016
Explanation:
We have the integral:
∫dx√x(1+x)
We will use the substitution
=2∫dx2√x(1+x)=2∫sec2θdθ1+tan2θ
Through the Pythagorean identity,
=2∫sec2θsec2θdθ=2∫dθ=2θ+C
From
=2arctan(√x)+C