How do you integrate 1x(1+x) by trigonometric substitution?

1 Answer
Sep 11, 2016

2arctan(x)+C

Explanation:

We have the integral:

dxx(1+x)

We will use the substitution x=tanθ. This implies that x=tan2θ and that 12xdx=sec2θdθ. Rearranging:

=2dx2x(1+x)=2sec2θdθ1+tan2θ

Through the Pythagorean identity, 1+tan2θ=sec2θ.

=2sec2θsec2θdθ=2dθ=2θ+C

From x=tanθ we see that θ=arctan(x). Thus:

=2arctan(x)+C