Evaluate the integral int \ 1/(x^2sqrt(x^2-9)) \ dx ?

3 Answers
Oct 18, 2017

sqrt(x^2-9)/(9|x|)+C.

Explanation:

We substitute, x=3secy rArr dx=3secytanydy.

:. I=int1/(x^2sqrt(x^2-9))dx,

=int{(3secy tany)dy}/{9sec^2ysqrt(9sec^2y-9),

=int{(cancel(3)secycancel(tany))dy}/{9sec^2y*cancel(3tany)},

=1/9int1/secydy=1/9intcosydy,

=1/9siny,

=1/9sqrt(1-cos^2y),

=1/9sqrt(1-1/sec^2y),

=1/9sqrt(1-(3/x)^2).......................[because, x=3secy],

=1/9sqrt(x^2-9)/|x|.

rArr I=sqrt(x^2-9)/(9|x|)+C.

Enjoy Maths.!

Oct 18, 2017

int \ 1/(x^2sqrt(x^2-9)) \ dx = 1/9 sqrt(1-9/x^2) + C

Explanation:

We seek:

I = int \ 1/(x^2sqrt(x^2-9)) \ dx

We can write the integral as follows:

I = int \ 1/(x^2sqrt(9(x^2/9-1))) \ dx
\ \ = int \ 1/(x^2sqrt(9)sqrt((x/3)^2-1)) \ dx
\ \ = 1/3 \ int \ 1/(x^2 sqrt((x/3)^2-1)) \ dx

Let us attempt a substitution of the form:

3sec theta = x => 3sectheta tantheta (d theta)/dx = 1

Then substituting into the integral, we get:

I = 1/3 \ int \ 1/((3sec theta)^2 sqrt((sec theta)^2-1)) \ 3sectheta tantheta \ d theta

\ \ = int \ (sectheta tantheta)/(9sec^2 theta sqrt(sec^2theta-1)) \ d theta

\ \ = 1/9 \ int \ (tantheta)/(sec theta sqrt(tan^2 theta)) \ d theta

\ \ = 1/9 \ int \ (tantheta)/(sec theta tan theta) \ d theta

\ \ = 1/9 \ int \ (1)/(sec theta) \ d theta

\ \ = 1/9 \ int \ cos theta \ d theta

\ \ = 1/9 sin theta + C

\ \ = 1/9 sqrt(1-cos^2 theta) + C

\ \ = 1/9 sqrt(1-(1/sec^2 theta)) + C

And we can now restore the earlier substitution:

I = 1/9 sqrt(1-(1/(x/3)^2)) + C
\ \ = 1/9 sqrt(1-(1/(x^2/9)) + C
\ \ = 1/9 sqrt(1-9/x^2) + C

Oct 18, 2017

int dx/(x^2sqrt(x^2-9)) = sqrt(x^2-9)/(9x)+ C

Explanation:

Restricting to the interval x in (3,+oo), substitute:

x=3sect

dx = 3 sect tant dt

with t in (0,pi/2) and get:

int dx/(x^2sqrt(x^2-9)) = 3 int (sect tant dt)/(9sec^2t sqrt(9sec^2t -9))

int dx/(x^2sqrt(x^2-9)) = 1/9 int ( tant dt)/(sect sqrt(sec^2t -1))

use now the trigonometric identity:

sec^2t -1 = 1/cos^2-1 = (1-cos^2t)/cos^2t =sin^2t/cos^2t = tan^2t

so that:

int dx/(x^2sqrt(x^2-9)) = 1/9 int ( tant dt)/(sect sqrt(tan^2t))

and as in the selected interval the tangent is positive:

int dx/(x^2sqrt(x^2-9)) = 1/9 int ( tant dt)/(sect tant)

int dx/(x^2sqrt(x^2-9)) = 1/9 int dt/sect

int dx/(x^2sqrt(x^2-9)) = 1/9 int costdt

int dx/(x^2sqrt(x^2-9)) = 1/9 sint + C

To undo the substitution note that:

x= 3sect = 3/cost = 3/sqrt(1-sin^2t)

sqrt(1-sin^2t) = 3/x

1-sin^2t = 9/x^2

sin^2t = 1-9/x^2

and as in the interval the sine is positive:

sint = sqrt(x^2-9)/x

So:

int dx/(x^2sqrt(x^2-9)) = sqrt(x^2-9)/(9x)+ C

And using the substitution x=-sect for x in (-oo,-3) we obtain the same result.