How do you integrate int (2-x^2)/sqrt(x^2-4)dx2x2x24dx using trigonometric substitution?

2 Answers
Jun 15, 2018

int (2-x^2)/sqrt(x^2 -4)dx = -(xsqrt(x^2-4))/2+C2x2x24dx=xx242+C

Explanation:

Let x = 2sectx=2sect, dx = 2sect tant dtdx=2secttantdt with t in (0,pi/2)t(0,π2):

int (2-x^2)/sqrt(x^2 -4)dx = 2int (2-4sec^2t)/sqrt(4sec^2t-4)sect tant dt2x2x24dx=224sec2t4sec2t4secttantdt

int (2-x^2)/sqrt(x^2 -4)dx = 2int (1-2sec^2t)/sqrt(sec^2t-1)sect tant dt2x2x24dx=212sec2tsec2t1secttantdt

Now:

sec^2t -1 = tan^2tsec2t1=tan2t

and as tant > 0tant>0 for t in (0,pi/2)t(0,π2):

sqrt(sec^2t -1) = tantsec2t1=tant

then:

int (2-x^2)/sqrt(x^2 -4)dx = 2int (1-2sec^2t)/tant sect tant dt2x2x24dx=212sec2ttantsecttantdt

int (2-x^2)/sqrt(x^2 -4)dx = 2int (1-2sec^2t)sect dt2x2x24dx=2(12sec2t)sectdt

Using the linearity if the integral:

int (2-x^2)/sqrt(x^2 -4)dx = 2int sect dt -4int sec^3t dt2x2x24dx=2sectdt4sec3tdt

The first integral is standard:

int sect dt = ln abs (sect + tant)+ Csectdt=ln|sect+tant|+C

Now solve:

int sec^3t dt = int sect*sec^2tdt = int sect d/dt (tant)dtsec3tdt=sectsec2tdt=sectddt(tant)dt

integrate by parts:

int sec^3t dt = sect tant - int tant d/dt (sect)dtsec3tdt=secttanttantddt(sect)dt

int sec^3t dt = sect tant - int sect tan^2tdtsec3tdt=secttantsecttan2tdt

int sec^3t dt = sect tant - int sect (sec^2t-1)dtsec3tdt=secttantsect(sec2t1)dt

int sec^3t dt = sect tant - int sec^3tdt + int sect dtsec3tdt=secttantsec3tdt+sectdt

2int sec^3t dt = sect tant + int sect dt2sec3tdt=secttant+sectdt

int sec^3t dt = (sect tant )/2 + 1/2 ln abs (sect + tant)+ Csec3tdt=secttant2+12ln|sect+tant|+C

Putting it together:

int (2-x^2)/sqrt(x^2 -4)dx = 2ln abs (sect + tant) - 2sect tant - 2ln abs (sect + tant)+ C2x2x24dx=2ln|sect+tant|2secttant2ln|sect+tant|+C

int (2-x^2)/sqrt(x^2 -4)dx = - 2sect tant+C2x2x24dx=2secttant+C

and undoing the substitution, as:

sect = x/2

tant = sqrt(sec^2t-1) = sqrt((x/2)^2-1) = 1/2 sqrt(x^2-4)

int (2-x^2)/sqrt(x^2 -4)dx = -(xsqrt(x^2-4))/2+C

Jun 15, 2018

Make a substitution that removes the square root in the denominator via the use of a trig identity.

Explanation:

Approach

We seek to make a substitution that removes the square root in the denominator via the use of a trig identity. Letting A and B each be some trig function (e.g. sin or sec), we seek an identity such that B^2(x)=A^2(x)-1. One such is tan^2(x)=sec^2(x)-1, obtained by dividing through the identity sin^2(x)+cos^2(x)=1 by cos^2(x).

Note that we might have an easier time of the later integration if we used hyperbolic functions instead - we could use cosh^2(x)-1=sinh^2(x) instead. But the question asks for a trig substitution, so we'll use the tan-sec identity above. I'll supply the hyperbolic substitution suggestion underneath, for your interest. If the hyperbolic functions are new to you, have a read of the Wikipedia article on them: https://en.wikipedia.org/wiki/Hyperbolic_function
They are both interesting and useful, as well as surprisingly easy to deal with. Knowing about them will enrich your knowledge of the trig functions.

Trig substitution and solution

Substitute x=2sectheta, so dx/(d theta)=2secthetatantheta, by an application of the quotient rule. Thus

int (2-x^2)/sqrt(x^2-4)dx=int (2-4sec^2theta)/sqrt(4sec^2theta-4) *2secthetatantheta d theta
(Use the above identity)
=int (2-4sec^2theta)/sqrt(4tan^2theta) *2secthetatantheta d theta
=2int (2-4sec^2theta)/(2tantheta) secthetatantheta d theta
=2int (1-2sec^2theta) sectheta d theta=2int sec theta-2sec^3theta d theta

The integrals of both sectheta and sec^3theta are derived here: https://www.math.ubc.ca/~feldman/m121/secx.pdf
We'll just take the results:
intsecthetad theta=ln |sectheta+tantheta|+C
intsec^3thetad theta=1/2secthetatantheta+1/2ln|sectheta+tantheta|+C

So, for our integral
2int sec theta-2sec^3theta d theta=
2ln|sectheta+tantheta|-2secthetatantheta-2ln|sectheta+tantheta|+C=
-2secthetatantheta+C=
-2secthetasqrt(sec^2theta-1)+C

Substitute back to our original variable x:
-2*1/2xsqrt(1/4x^2-1)+C=
-x/2sqrt(x^2-4)+C

Alternative solution using hyperbolic substitution

As I mentioned this above as an alternative approach, let's work it through to give you more info on ways to attack such problems.

Instead of substituting x=2sectheta as above, substitute x=2coshu. Then dx/(du)=2sinhu.

int (2-x^2)/sqrt(x^2-4)dx=int (2-4cosh^2u)/sqrt(4cosh^2u-4) *2 sinhu d theta
=2int (2-4cosh^2u)/sqrt(4sinh^2u) sinhu d theta
=2int (2-4cosh^2u)/(2sinhu) sinhu d theta
=2int 1-2cosh^2u d theta

This is where we see how the hyperbolic approach produces easier working - this is an easier integral than the 2intsectheta-2sec^3theta d theta that the trig substitution produced. Continuing, using the identity 1-2cosh^2u=-cosh2u

2int 1-2cosh^2u du=-2int cosh2udu
=-sinh2u+C=-2sinhucoshu+C=-2coshusqrt(coshu^2-1)+C

Substitute back to our original variable x:
-2x/2sqrt((x/2)^2-1)+C=
-x/2sqrt(x^2-4)+C, as before, but with less awkward working in the integral.

Moral

When presented with an integral of a fraction with a square root denominator of a quadratic, it's always worth taking a moment to think about which particular trig or hyperbolic substitution will make for the easiest route to the answer. There's usually more than one option, and some will be harder work than others. If you can avoid using tans and secs by employing sinhs and coshs, it's almost always a good idea to do so. Unless, of course, the question-setter specifically requests that your solution uses a trig substitution!