How do you integrate ∫dx(4x2+9)2 using trig substitutions? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Mar 21, 2018 ∫dx(4x2+9)2=1108arctan(2x3)+x72x2+162+C Explanation: ∫dx(4x2+9)2 =12∫2dx((2x)2+32)2 After using 2x=3tanu and 2dx=3(secu)2⋅du transforms, this integral became 12∫3(secu)2⋅du81(secu)4 =154∫(cosu)2⋅du =1108∫(1+cos2u)⋅du =1108u+1216sin2u+C =1108u+1216⋅2tanu(tanu)2+1+C After using 2x=3tanu, tanu=2x3 and u=arctan(2x3) inverse transforms, I found ∫dx(4x2+9)2 =1108arctan(2x3)+1216⋅2⋅2x3(2x3)2+1+C =1108arctan(2x3)+x72x2+162+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6075 views around the world You can reuse this answer Creative Commons License