How do you integrate dx(4x2+9)2 using trig substitutions?

1 Answer
Mar 21, 2018

dx(4x2+9)2=1108arctan(2x3)+x72x2+162+C

Explanation:

dx(4x2+9)2

=122dx((2x)2+32)2

After using 2x=3tanu and 2dx=3(secu)2du transforms, this integral became

123(secu)2du81(secu)4

=154(cosu)2du

=1108(1+cos2u)du

=1108u+1216sin2u+C

=1108u+12162tanu(tanu)2+1+C

After using 2x=3tanu, tanu=2x3 and u=arctan(2x3) inverse transforms, I found

dx(4x2+9)2

=1108arctan(2x3)+121622x3(2x3)2+1+C

=1108arctan(2x3)+x72x2+162+C