How do you find the integral of sqrt(x^2-25)/xx225x?

1 Answer
Mar 31, 2018

int sqrt(x^2-25)/x dx =sqrt(x^2-25) - arctan(sqrt(x^2-25)/5)+Cx225xdx=x225arctan(x2255)+C

Explanation:

The function is defined for abs x >=5|x|5. Restrict for the moment to x > 5x>5 and substitute:

x = 5 sectx=5sect

dx = 5sect tant dtdx=5secttantdt

with t in [0,pi/2)t[0,π2).

Then:

int sqrt(x^2-25)/x dx = 5 int (sqrt(25sec^2t -25) sect tant )/(5sect)dtx225xdx=525sec2t25secttant5sectdt

int sqrt(x^2-25)/x dx = 5 int sqrt(sec^2t -1) tant dtx225xdx=5sec2t1tantdt

Use now the trigonometric identity:

sec^2-1 = tan^2tsec21=tan2t

and as for in [0,pi/2)[0,π2) the tangent is positive:

sqrt(sec^2-1) = tantsec21=tant

so:

int sqrt(x^2-25)/x dx = 5 int tan^2t dtx225xdx=5tan2tdt

using the same identity again:

int sqrt(x^2-25)/x dx = 5 int (sec^2t-1) dtx225xdx=5(sec2t1)dt

and for the linearity of the integral:

int sqrt(x^2-25)/x dx = 5 int sec^2tdt -5int dtx225xdx=5sec2tdt5dt

int sqrt(x^2-25)/x dx = 5tant-5t +Cx225xdx=5tant5t+C

To undo the substitution note that:

tant = sqrt(sec^2t-1) = sqrt((x/5)^2-1) = 1/5 sqrt(x^2-25)tant=sec2t1=(x5)21=15x225

and then:

t = arctan(sqrt(x^2-25)/5)t=arctan(x2255)

So:

int sqrt(x^2-25)/x dx =sqrt(x^2-25) - arctan(sqrt(x^2-25)/5)+Cx225xdx=x225arctan(x2255)+C

By differentiating both sides we can verify that the solution extends also to x < -5x<5.