How do you integrate x169x4 by trigonometric substitution?

1 Answer
Mar 6, 2018

The answer is =16arcsin(34x2)+C

Explanation:

Let's perform some simplification

169x4=16(1916x4)=16(1(34x2)2)

Perform the substitution

sinθ=34x2, , cosθdθ=342xdx

xdx=23cosθdθ

16(1(34x2)2)=16(1sin2θ)=16cos2θ

Therefore,

xdx169x4=23cosθdθ16cos2θ

=16dθ

=16θ

=16arcsin(34x2)+C