How do you integrate int x /sqrt( 16 - x^4 )dxx16x4dx using trigonometric substitution?

1 Answer
Jan 21, 2016

you just need to do a normal substitution

u = 1/4x^2u=14x2
du = 1/2xdxdu=12xdx

2int1/2x/sqrt(16-x^4)dx212x16x4dx

2int1/sqrt(16-16u^2)du211616u2du

1/2int1/sqrt(1-u^2)du1211u2du

as you know, it's the derivate of arcsin(u)arcsin(u)

so

= 1/2[arcsin(u)]+C=12[arcsin(u)]+C

= 1/2[arcsin(x^2)]+C=12[arcsin(x2)]+C

OF COURSE You can do it with u = sin(t)u=sin(t)

du = cos(t) dtdu=cos(t)dt

and you have

1/2intcos(t)/cos(t)dt12cos(t)cos(t)dt

1/2intdt12dt

1/2[t]12[t]

the fact is t = arcsin(u)t=arcsin(u) ...