How do you integrate int dx/(9x^2-25)^(3/2)dx(9x225)32 using trig substitutions?

1 Answer
Nov 24, 2016

The answer is =-x/(25*sqrt(9x^2-25))+C=x259x225+C

Explanation:

We use sec^2u=1+tan^2usec2u=1+tan2u

Let's use the substitution

x=(5secu)/3x=5secu3 =>, dx=(5secutanudu)/3dx=5secutanudu3

intdx/(9x^2-25)^(3/2)=int((5secutanudu)/3)/(9*25/9sec^2u-25)^(3/2)dx(9x225)32=5secutanudu3(9259sec2u25)32

=int(5secutanudu)/(3*125(tan^3u))=5secutanudu3125(tan3u)

=1/75int(secudu)/tan^2u=175secudutan2u

=1/75int(cos^2udu)/(cosu sin^2u)=175cos2uducosusin2u

=1/75int(cosudu)/(sin^2u)=175cosudusin2u

Let v=sinuv=sinu,=>dv=cosududv=cosudu

Therefore,

1/75int(cosudu)/(sin^2u)=1/75int(dv)/v^2175cosudusin2u=175dvv2

=1/75intv^(-2)dv=1/75v^(-1)/-1=-1/(75v)=175v2dv=175v11=175v

=-1/(75sinu)=175sinu

x=(5secu)/3x=5secu3 =>, cosu=5/(3x)cosu=53x

sin^2u=1-cos^2u=1-25/(9x^2)=(9x^2-25)/(9x^2)sin2u=1cos2u=1259x2=9x2259x2

1/sinu=(3x)/(sqrt(9x^2-25))1sinu=3x9x225

Therefore,

intdx/(9x^2-25)^(3/2)=(-1/75)*(3x)/(sqrt(9x^2-25))+Cdx(9x225)32=(175)3x9x225+C

=-x/(25*sqrt(9x^2-25))+C=x259x225+C