We use sec^2u=1+tan^2usec2u=1+tan2u
Let's use the substitution
x=(5secu)/3x=5secu3 =>⇒, dx=(5secutanudu)/3dx=5secutanudu3
intdx/(9x^2-25)^(3/2)=int((5secutanudu)/3)/(9*25/9sec^2u-25)^(3/2)∫dx(9x2−25)32=∫5secutanudu3(9⋅259sec2u−25)32
=int(5secutanudu)/(3*125(tan^3u))=∫5secutanudu3⋅125(tan3u)
=1/75int(secudu)/tan^2u=175∫secudutan2u
=1/75int(cos^2udu)/(cosu sin^2u)=175∫cos2uducosusin2u
=1/75int(cosudu)/(sin^2u)=175∫cosudusin2u
Let v=sinuv=sinu,=>⇒dv=cosududv=cosudu
Therefore,
1/75int(cosudu)/(sin^2u)=1/75int(dv)/v^2175∫cosudusin2u=175∫dvv2
=1/75intv^(-2)dv=1/75v^(-1)/-1=-1/(75v)=175∫v−2dv=175v−1−1=−175v
=-1/(75sinu)=−175sinu
x=(5secu)/3x=5secu3 =>⇒, cosu=5/(3x)cosu=53x
sin^2u=1-cos^2u=1-25/(9x^2)=(9x^2-25)/(9x^2)sin2u=1−cos2u=1−259x2=9x2−259x2
1/sinu=(3x)/(sqrt(9x^2-25))1sinu=3x√9x2−25
Therefore,
intdx/(9x^2-25)^(3/2)=(-1/75)*(3x)/(sqrt(9x^2-25))+C∫dx(9x2−25)32=(−175)⋅3x√9x2−25+C
=-x/(25*sqrt(9x^2-25))+C=−x25⋅√9x2−25+C