How do you integrate int 1/sqrt(-e^(2x) +100)dx using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cesareo R. Jul 10, 2016 1/10 int (dy)/cosy Explanation: Making e^{-x} = 10 cosy we have - e^{-x}dx = -10 sin y dy and dx = 10 siny/e^{-x}dy = tan y dy so int (dx)/sqrt(-e^(2x) +100) equiv 1/10int (tany)/sinydy = 1/10 int (dy)/cosy Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1541 views around the world You can reuse this answer Creative Commons License