How do you integrate int x^2 /sqrt( 16+x^4 )dx using trigonometric substitution?

1 Answer
Sep 10, 2016

This cannot be integrated using elementary functions.

Explanation:

Use the substitution x^2=4tantheta. This implies that 2xdx=4sec^2thetad theta. Also keep in mind that x=2sqrttantheta.

We have:

intx^2/sqrt(16+x^4)dx=1/2int(x(2xdx))/sqrt(16+x^4)

=1/2int(2sqrttantheta(4sec^2thetad theta))/sqrt(16+16tan^2theta)=int(sqrttantheta(sec^2theta)d theta)/sqrt(1+tan^2theta)

Note that 1+tan^2theta=sec^2theta, so sectheta=sqrt(1+tan^2theta):

=int(sqrttantheta(sec^2theta)d theta)/sectheta=intsqrttanthetasecthetad theta

The more we continue, we see that this cannot be integrated using elementary functions.