How do you integrate (tan2x+tan4x)dx?  

1 Answer
Mar 9, 2015

Re-write it and use substitution.

(tan2x+tan4x)dx=(sin2xcos2x+sin4xcos4x)dx.

Now do the integrals seperately:

sin2xcos2xdx.

Let u=cos2x. this makes du=2sin2xdx, so sin2xdx=12du.

sin2xcos2xdx=121cos2xsin2xdx=121udu

So, sin2xcos2xdx=12ln|cos2x|.

In a similar way the second integral is found to be

sin4xcos4xdx=14ln|cos4x|.

So,
(tan2x+tan4x)dx=12ln|cos2x|14ln|cos4x|+C.

Of course, there are many way of rewriting this expression..