How do you evaluate the integral x2arcsecx?

1 Answer
Jun 22, 2017

13x3sec1(x)16xx2116lnx+x21+C

Explanation:

I=x2sec1(x)dx

Let x=secθ. Then, θ=sec1(x) and dx=secθtanθdθ.

I=sec2θ(θ)(secθtanθdθ)=θsec3θtanθdθ

Note that sec3θtanθdθ=sec2θ.d(secθ)=13sec3θ. Then, we can easily perform integration by parts on I by letting:

u=θ du=dθ

dv=sec3θtanθdθ v=13sec3θ

So:

I=13θsec3θ13sec3θdθ

We can solve this integral with integration by parts again, now letting:

u=secθ du=secθtanθdθ

dv=sec2θdθ v=tanθ

So:

I=13θsec3θ13(secθtanθsecθtan2θdθ)

Letting tan2θ=sec2θ1 this becomes:

I=13θsec3θ13secθtanθ+13secθ(sec2θ1)

I=13θsec3θ13secθtanθ+13sec3θdθ13secθdθ

I=13θsec3θ13secθtanθ13ln|secθ+tanθ|+13sec3θdθ

Earlier () we noted that I=13θsec3θ13sec3θdθ, so we can set this to be equivalent to the expression we just found.

13θsec3θ13sec3θdθ=13θsec3θ13secθtanθ13ln|secθ+tanθ|+13sec3θdθ

Rearranging:

23sec3θdθ=13secθtanθ13ln|secθ+tanθ|

Which gives:

13sec3θdθ=16secθtanθ16ln|secθ+tanθ|

Plugging this into yields:

I=13θsec3θ16secθtanθ16ln|secθ+tanθ|

We can now return to our original variable x using x=secθ, tanθ=sec2θ1=x21 and θ=sec1(x):

I=13x3sec1(x)16xx2116lnx+x21+C