How do you integrate int sqrt(x^2-a^2)/x^4x2a2x4 by trigonometric substitution?

1 Answer

(x^2-a^2)^(3/2)/(3a^2x^3)+C(x2a2)323a2x3+C.

Explanation:

We take subst. x=asect, so, dx=asect*tant dtx=asect,so,dx=asecttantdt

Also, sqrt(x^2-a^2)/x^4x2a2x4

=sqrt(a^2sec^2t-a^2)/(a^4sec^4t)=a2sec2ta2a4sec4t

=(atant)/(a^4sec^4t)=1/a^3*sint/cost*cos^4t=(sintcos^3t)/a^3=atanta4sec4t=1a3sintcostcos4t=sintcos3ta3

:. I=intsqrt(x^2-a^2)/x^4dx=int(sintcos^3t)/a^3*asect*tantdt

=1/a^2intsintcos^3t*1/cost*sint/costdt

=1/a^2intsin^2tcostdt................(star)

=1/a^2int(sint)^2d(sint)

=1/a^2*(sint)^3/3

Now, sect=x/arArrcost=a/xrArrsint=sqrt(1-a^2/x^2)=sqrt(x^2-a^2)/x

:. I=1/(3a^2)*(sqrt(x^2-a^2)/x)^3=(x^2-a^2)^(3/2)/(3a^2x^3)+C.

To proceed further from (star), we can use another subst. sint=y,

so, costdt=dy, thus giving,

I=1/a^2inty^2dy=y^3/(3a^2)=(sint)^3/(3a^2)