We take subst. x=asect, so, dx=asect*tant dtx=asect,so,dx=asect⋅tantdt
Also, sqrt(x^2-a^2)/x^4√x2−a2x4
=sqrt(a^2sec^2t-a^2)/(a^4sec^4t)=√a2sec2t−a2a4sec4t
=(atant)/(a^4sec^4t)=1/a^3*sint/cost*cos^4t=(sintcos^3t)/a^3=atanta4sec4t=1a3⋅sintcost⋅cos4t=sintcos3ta3
:. I=intsqrt(x^2-a^2)/x^4dx=int(sintcos^3t)/a^3*asect*tantdt
=1/a^2intsintcos^3t*1/cost*sint/costdt
=1/a^2intsin^2tcostdt................(star)
=1/a^2int(sint)^2d(sint)
=1/a^2*(sint)^3/3
Now, sect=x/arArrcost=a/xrArrsint=sqrt(1-a^2/x^2)=sqrt(x^2-a^2)/x
:. I=1/(3a^2)*(sqrt(x^2-a^2)/x)^3=(x^2-a^2)^(3/2)/(3a^2x^3)+C.
To proceed further from (star), we can use another subst. sint=y,
so, costdt=dy, thus giving,
I=1/a^2inty^2dy=y^3/(3a^2)=(sint)^3/(3a^2)