How do you find the integral of int 1/(sqrtxsqrt(1-x)?
1 Answer
Nov 22, 2016
Explanation:
I=int1/(sqrtxsqrt(1-(sqrtx)^2))dx
Let
I=2int1/(2sqrtxsqrt(1-(sqrtx)^2))dx
I=2int1/sqrt(1-u^2)du
You may recognize this as the arcsine integral, but we can substitute
I=2int1/sqrt(1-sin^2theta)(costhetad theta)
Since
I=2int1/costhetacosthetad theta
I=2intd theta
I=2theta+C
From
I=2arcsin(u)+C
I=2arcsin(sqrtx)+C