How do you find the integral of int 1/(sqrtxsqrt(1-x)?

1 Answer
Nov 22, 2016

2arcsin(sqrtx)+C

Explanation:

I=int1/(sqrtxsqrt(1-(sqrtx)^2))dx

Let u=sqrtx so du=1/(2sqrtx)dx.

I=2int1/(2sqrtxsqrt(1-(sqrtx)^2))dx

I=2int1/sqrt(1-u^2)du

You may recognize this as the arcsine integral, but we can substitute u=sintheta to show this. We also see that du=costhetad theta.

I=2int1/sqrt(1-sin^2theta)(costhetad theta)

Since 1-sin^2theta=cos^2theta:

I=2int1/costhetacosthetad theta

I=2intd theta

I=2theta+C

From u=sintheta we see that theta=arcsin(u):

I=2arcsin(u)+C

I=2arcsin(sqrtx)+C