How do you evaluate the integral ∫x3−4x+1?
1 Answer
Jan 22, 2017
∫x3−4x+1dx
Let
=∫(u−1)3−4udu
Expand
=∫(u3−3u2+3u−1)−4u
=∫(u2−3u+3−5u)du
Integrate term by term:
=13u3−32u2+3u−5ln|u|+C
=13(x+1)3−32(x+1)2+3(x+1)−5ln|x+1|+C