How do you integrate ∫sec3x?
1 Answer
Feb 8, 2017
Explanation:
∫sec(3x)dx
Use the substitution
=13∫sec(3x)(3)dx=13∫sec(u)du
This is a common integral:
We can derive this integral by multiplying the integrand by
=13∫sec(u)sec(u)+tan(u)sec(u)+tan(u)du=13∫sec2(u)+sec(u)tan(u)sec(u)+tan(u)du
Now let
=13∫dvv=13ln|v|+C=13ln|sec(u)+tan(u)|+C
Finally:
=13ln|sec(3x)+tan(3x)|+C