How do you integrate sec3x?

1 Answer
Feb 8, 2017

sec(3x)dx=13ln|sec(3x)+tan(3x)|+C

Explanation:

sec(3x)dx

Use the substitution u=3x, implying that du=(3)dx. Then:

=13sec(3x)(3)dx=13sec(u)du

This is a common integral: sec(u)du=ln|sec(u)+tan(u)|+C

We can derive this integral by multiplying the integrand by sec(u)+tan(u)sec(u)+tan(u):

=13sec(u)sec(u)+tan(u)sec(u)+tan(u)du=13sec2(u)+sec(u)tan(u)sec(u)+tan(u)du

Now let v=sec(u)+tan(u). This implies that dv=(sec(u)tan(u)+sec2(u))du. This is the numerator:

=13dvv=13ln|v|+C=13ln|sec(u)+tan(u)|+C

Finally:

=13ln|sec(3x)+tan(3x)|+C