How do you evaluate the integral int (xdx)/(2x-1)^2?

2 Answers
Jan 28, 2017

int (xdx)/(2x-1)^2 = 1/4 ln abs (2x-1) -1/4 1/(2x-1) +C

Explanation:

Write the numerator of the integrand function as:

x = 1/2 (2x-1) +1/2

So that we can split the integral as:

int (xdx)/(2x-1)^2 = 1/2 int (2x-1)/(2x-1)^2 dx +1/2 int (dx)/(2x-1)^2

SImplify the function in the first integral:

int (xdx)/(2x-1)^2 = 1/2 int (dx)/(2x-1) +1/2 int (dx)/(2x-1)^2

Now note that: d(2x-1) = 2dx:

int (xdx)/(2x-1)^2 = 1/4 int (d(2x-1))/(2x-1) +1/4 int (d(2x-1))/(2x-1)^2

and we have:

int (xdx)/(2x-1)^2 = 1/4 ln abs (2x-1) -1/4 1/(2x-1) +C

Jan 28, 2017

I got: =1/4(ln|2x-1|-1/(2x-1))+c

Explanation:

We can try seting: 2x-1=t so that:
x=1/2(t+1)
dx=1/2dt
Substituting we get:
int(xdx)/(2x+1)^2=int1/2(t+1)1/t^2dt/2=
Rearrange:
1/4int(t/t^2+1/t^2)dt=1/4[int1/tdt+int1/t^2dt]=
and integrate:
=1/4(ln|t|-1/t)+c
We finally go back to x remembering that t=2x-1:
=1/4(ln|2x-1|-1/(2x-1))+c