How do you integrate int(sinx+cosx)^2∫(sinx+cosx)2? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Massimiliano Mar 1, 2015 The answer is: x-1/2cos2x+cx−12cos2x+c. int(sinx+cosx)^2dx=int(sin^2x+2sinxcosx+cos^2x)dx=∫(sinx+cosx)2dx=∫(sin2x+2sinxcosx+cos2x)dx= =int(1+sin2x)dx=intdx+1/2int2sin2xdx==∫(1+sin2x)dx=∫dx+12∫2sin2xdx= =x-1/2cos2x+c=x−12cos2x+c. Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx∫1x2⋅√x2−9dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx∫x3√x2+9dx ? How do you find the integral intx^3*sqrt(9-x^2)dx∫x3⋅√9−x2dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx∫x3√16−x2dx ? How do you find the integral intsqrt(x^2-1)/xdx∫√x2−1xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx∫√x2−9x3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx∫x√x2+x+1dx ? How do you find the integral intdt/(sqrt(t^2-6t+13))∫dt√t2−6t+13 ? How do you find the integral intx*sqrt(1-x^4)dx∫x⋅√1−x4dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 12054 views around the world You can reuse this answer Creative Commons License