How do you integrate int (6-x^2)/sqrt(9-x^2) dx∫6−x2√9−x2dx using trigonometric substitution?
1 Answer
Explanation:
I=int(6-x^2)/sqrt(9-x^2)dxI=∫6−x2√9−x2dx
Rewrite the integral for simplification:
I=int(-3+9-x^2)/sqrt(9-x^2)dx=-3intdx/sqrt(9-x^2)+int(9-x^2)/sqrt(9-x^2)dxI=∫−3+9−x2√9−x2dx=−3∫dx√9−x2+∫9−x2√9−x2dx
color(white)I=-3intdx/sqrt(9-x^2)+intsqrt(9-x^2)dxI=−3∫dx√9−x2+∫√9−x2dx
First focusing on
J=intdx/sqrt(9-x^2)=int(3costhetad theta)/sqrt(9-9sin^2theta)=intcostheta/sqrt(1-sin^2theta)d theta=intd thetaJ=∫dx√9−x2=∫3cosθdθ√9−9sin2θ=∫cosθ√1−sin2θdθ=∫dθ
color(white)J=theta=arcsin(x/3)J=θ=arcsin(x3)
Recall that the
Now we can work on the next integral
K=intsqrt(9-x^2)dx=intsqrt(9-9sin^2phi)(3cosphidphi)K=∫√9−x2dx=∫√9−9sin2ϕ(3cosϕdϕ)
color(white)K=9intsqrt(1-sin^2phi)(cosphi)dphi=9intcos^2phidphiK=9∫√1−sin2ϕ(cosϕ)dϕ=9∫cos2ϕdϕ
Rewrite by solving for
K=9int(cos2phi+1)/2dphi=9/2intcos2phidphi+9/2intdphiK=9∫cos2ϕ+12dϕ=92∫cos2ϕdϕ+92∫dϕ
For the first integral, we can use the substitution
K=9/4intcosudu+9/2phi=9/4sinu+9/2phi=9/4sin2phi+9/2phiK=94∫cosudu+92ϕ=94sinu+92ϕ=94sin2ϕ+92ϕ
Using
K=9/2sinphicosphi+9/2phiK=92sinϕcosϕ+92ϕ
Now to undo these substitutions, recall that
K=9/2(x/3)(1/3sqrt(9-x^2))+9/2arcsin(x/3)K=92(x3)(13√9−x2)+92arcsin(x3)
color(white)K=1/2xsqrt(9-x^2)+9/2arcsin(x/3)K=12x√9−x2+92arcsin(x3)
Returning to the original integral:
I=-3J+KI=−3J+K
color(white)I=-3arcsin(x/3)+[1/2xsqrt(9-x^2)+9/2arcsin(x/3)]I=−3arcsin(x3)+[12x√9−x2+92arcsin(x3)]
color(white)I=1/2xsqrt(9-x^2)+3/2arcsin(x/3)+CI=12x√9−x2+32arcsin(x3)+C