How do you integrate int (6-x^2)/sqrt(9-x^2) dx6x29x2dx using trigonometric substitution?

1 Answer
Nov 8, 2016

1/2xsqrt(9-x^2)+3/2arcsin(x/3)+C12x9x2+32arcsin(x3)+C

Explanation:

I=int(6-x^2)/sqrt(9-x^2)dxI=6x29x2dx

Rewrite the integral for simplification:

I=int(-3+9-x^2)/sqrt(9-x^2)dx=-3intdx/sqrt(9-x^2)+int(9-x^2)/sqrt(9-x^2)dxI=3+9x29x2dx=3dx9x2+9x29x2dx

color(white)I=-3intdx/sqrt(9-x^2)+intsqrt(9-x^2)dxI=3dx9x2+9x2dx

First focusing on J=intdx/sqrt(9-x^2)J=dx9x2. For this, let x=3sinthetax=3sinθ. This implies that dx=3costhetad thetadx=3cosθdθ.

J=intdx/sqrt(9-x^2)=int(3costhetad theta)/sqrt(9-9sin^2theta)=intcostheta/sqrt(1-sin^2theta)d theta=intd thetaJ=dx9x2=3cosθdθ99sin2θ=cosθ1sin2θdθ=dθ

color(white)J=theta=arcsin(x/3)J=θ=arcsin(x3)

Recall that the theta=arcsin(x/3)θ=arcsin(x3) relationship comes from our earlier substitution x=3sinthetax=3sinθ.

Now we can work on the next integral K=intsqrt(9-x^2)dxK=9x2dx. We will use the same substitution as before, x=3sinphix=3sinϕ, implying that dx=3cosphidphidx=3cosϕdϕ.

K=intsqrt(9-x^2)dx=intsqrt(9-9sin^2phi)(3cosphidphi)K=9x2dx=99sin2ϕ(3cosϕdϕ)

color(white)K=9intsqrt(1-sin^2phi)(cosphi)dphi=9intcos^2phidphiK=91sin2ϕ(cosϕ)dϕ=9cos2ϕdϕ

Rewrite by solving for cos^2xcos2x in the identity cos2x=2cos^2x-1cos2x=2cos2x1.

K=9int(cos2phi+1)/2dphi=9/2intcos2phidphi+9/2intdphiK=9cos2ϕ+12dϕ=92cos2ϕdϕ+92dϕ

For the first integral, we can use the substitution u=2phiu=2ϕ so du=2dphidu=2dϕ and dphi=1/2dudϕ=12du. The second integral is a fundamental one:

K=9/4intcosudu+9/2phi=9/4sinu+9/2phi=9/4sin2phi+9/2phiK=94cosudu+92ϕ=94sinu+92ϕ=94sin2ϕ+92ϕ

Using sin2x=2sinxcosxsin2x=2sinxcosx:

K=9/2sinphicosphi+9/2phiK=92sinϕcosϕ+92ϕ

Now to undo these substitutions, recall that x=3sinphix=3sinϕ. Thus, phi=arcsin(x/3)ϕ=arcsin(x3) and sinphi=x/3sinϕ=x3. Thus cosphi=sqrt(1-sin^2phi)=sqrt(1-x^2/9)=1/3sqrt(9-x^2)cosϕ=1sin2ϕ=1x29=139x2. So:

K=9/2(x/3)(1/3sqrt(9-x^2))+9/2arcsin(x/3)K=92(x3)(139x2)+92arcsin(x3)

color(white)K=1/2xsqrt(9-x^2)+9/2arcsin(x/3)K=12x9x2+92arcsin(x3)

Returning to the original integral:

I=-3J+KI=3J+K

color(white)I=-3arcsin(x/3)+[1/2xsqrt(9-x^2)+9/2arcsin(x/3)]I=3arcsin(x3)+[12x9x2+92arcsin(x3)]

color(white)I=1/2xsqrt(9-x^2)+3/2arcsin(x/3)+CI=12x9x2+32arcsin(x3)+C