How do you integrate #int (6-x^2)/sqrt(9-x^2) dx# using trigonometric substitution?
1 Answer
Explanation:
#I=int(6-x^2)/sqrt(9-x^2)dx#
Rewrite the integral for simplification:
#I=int(-3+9-x^2)/sqrt(9-x^2)dx=-3intdx/sqrt(9-x^2)+int(9-x^2)/sqrt(9-x^2)dx#
#color(white)I=-3intdx/sqrt(9-x^2)+intsqrt(9-x^2)dx#
First focusing on
#J=intdx/sqrt(9-x^2)=int(3costhetad theta)/sqrt(9-9sin^2theta)=intcostheta/sqrt(1-sin^2theta)d theta=intd theta#
#color(white)J=theta=arcsin(x/3)#
Recall that the
Now we can work on the next integral
#K=intsqrt(9-x^2)dx=intsqrt(9-9sin^2phi)(3cosphidphi)#
#color(white)K=9intsqrt(1-sin^2phi)(cosphi)dphi=9intcos^2phidphi#
Rewrite by solving for
#K=9int(cos2phi+1)/2dphi=9/2intcos2phidphi+9/2intdphi#
For the first integral, we can use the substitution
#K=9/4intcosudu+9/2phi=9/4sinu+9/2phi=9/4sin2phi+9/2phi#
Using
#K=9/2sinphicosphi+9/2phi#
Now to undo these substitutions, recall that
#K=9/2(x/3)(1/3sqrt(9-x^2))+9/2arcsin(x/3)#
#color(white)K=1/2xsqrt(9-x^2)+9/2arcsin(x/3)#
Returning to the original integral:
#I=-3J+K#
#color(white)I=-3arcsin(x/3)+[1/2xsqrt(9-x^2)+9/2arcsin(x/3)]#
#color(white)I=1/2xsqrt(9-x^2)+3/2arcsin(x/3)+C#