How do you integrate int (9+x^2)/sqrt(4 - x^2)dx using trigonometric substitution?

1 Answer
Apr 2, 2018

11sin^(-1)(x/2) + 4 sin(2sin^(-1)(x/2))

Explanation:

int (9 + x^2)/sqrt(4-x^2)
Sub x=2 sin theta
dx/d(theta)=2costheta
int(9+4(sin theta))^2/sqrt(4(cos theta)^2) x 2costheta
=int 9+4 (sin theta)^2
= int 9 + 4 times 1/2(1-cos2 theta)

--> cos2 theta = (cos theta)^2-(sin theta)^2
--> cos 2 theta = 1-2(sin theta)^2
--> (sin theta)^2 = 1/2(1-cos2 theta)

= int 9 +2-2cos2theta
= int 11-2cos2 theta
= 11theta+4sin 2theta
= 11sin^(-1)(x/2) + 4 sin(2sin^(-1)(x/2))