How do you integrate int x sqrt( 1 - x^4 )dx using trigonometric substitution?

1 Answer
Mar 12, 2018

If we let u = x^2, then du = 2xdx and dx= (du)/(2x).

I = int xsqrt(1 - u^2)(du)/(2x)

I = 1/2intsqrt( 1 - u^2) du

This is when the trig substitution comes in. Let u = sintheta. Then du = costheta d theta.

I = 1/2int sqrt(1 - sin^2theta) costheta d theta

I = 1/2int sqrt(cos^2theta)costheta d theta

I = 1/2int costhetacostheta d theta

I = 1/2int cos^2theta d theta

We know that cos(2theta) = 2cos^2theta - 1, so 1/2cos(2theta) = cos^2theta - 1/2 and 1/2cos(2theta) + 1/2 = cos^2theta. This is the famous power reduction identity, frequently rewritten as 1/2(cos2theta + 1)

I = 1/2int 1/2(cos2theta + 1) d theta

I = 1/4int cos(2theta) + 1 d theta

I = 1/4(1/2sin(2theta)) + 1/4theta + C

I = 1/8sin(2theta) + 1/4theta + C

Recall that sin(2theta) = 2sinthetacostheta.

I = 1/8(2)sinthetacostheta + 1/4theta + C

I = 1/4sinthetacostheta + 1/4theta + C

From our initial theta-substitution, we know that sintheta = u/1. Thus theta = arcsin(u) and costheta = sqrt(1- u^2)

I = 1/4usqrt(1 - u^2) + 1/4arcsin(u) + C

I = 1/4x^2sqrt(1 - x^4) + 1/4arcsin(x^2) + C

Hopefully this helps!