How do you evaluate int 1/(9+x^2)19+x2 from [sqrt3,3][3,3]?

1 Answer
Jan 11, 2017

pi/36.π36.

Explanation:

Let I=int_sqrt3^3 1/(x^2+9)dx.I=331x2+9dx.

By the Fundamental Theorem of Calculus,

intf(x)=F(x)+C rArr int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a)f(x)=F(x)+Cbaf(x)dx=[F(x)]ba=F(b)F(a).

Since, int1/(x^2+a^2)dx=1/aarc tan(x/a)+c1x2+a2dx=1aarctan(xa)+c, we have,

I=1/3[arc tan(x/3)]_sqrt3^3I=13[arctan(x3)]33

1/3[arc tan(3/3)-arc tan(sqrt3/3)]13[arctan(33)arctan(33)]

=1/3[pi/4-pi/6]=13[π4π6]

:. I=pi/36.

Enjoy Maths.!