How do you integrate int 1/sqrt(x^2-a^2)∫1√x2−a2 by trigonometric substitution?
1 Answer
Explanation:
intdx/sqrt(x^2-a^2)∫dx√x2−a2
We will use the substitution
=int(asecthetatanthetad theta)/sqrt(a^2sec^2theta-a^2)=int(asecthetatanthetad theta)/(asqrt(sec^2theta-1))=∫asecθtanθdθ√a2sec2θ−a2=∫asecθtanθdθa√sec2θ−1
Note that
=int(secthetatanthetad theta)/tantheta=intsecthetad theta=lnabs(sectheta+tantheta)+C=∫secθtanθdθtanθ=∫secθdθ=ln|secθ+tanθ|+C
From
So,
=lnabs(x/a+sqrt(x^2-a^2)/a)+C=ln∣∣∣xa+√x2−a2a∣∣∣+C
Note that a
=lnabs(x+sqrt(x^2-a^2))+C=ln∣∣x+√x2−a2∣∣+C