How do you integrate int 1/sqrt(x^2-a^2)1x2a2 by trigonometric substitution?

1 Answer
Sep 12, 2016

lnabs(x+sqrt(x^2-a^2))+Clnx+x2a2+C

Explanation:

intdx/sqrt(x^2-a^2)dxx2a2

We will use the substitution x=asecthetax=asecθ. Thus dx=asecthetatanthetad thetadx=asecθtanθdθ. Substituting:

=int(asecthetatanthetad theta)/sqrt(a^2sec^2theta-a^2)=int(asecthetatanthetad theta)/(asqrt(sec^2theta-1))=asecθtanθdθa2sec2θa2=asecθtanθdθasec2θ1

Note that tan^2theta=sec^2theta-1tan2θ=sec2θ1:

=int(secthetatanthetad theta)/tantheta=intsecthetad theta=lnabs(sectheta+tantheta)+C=secθtanθdθtanθ=secθdθ=ln|secθ+tanθ|+C

From x=asecthetax=asecθ we see that sectheta=x/asecθ=xa. Thus we have a right triangle where xx is the hypotenuse and aa is the adjacent side. Through the Pythagorean theorem we see that the opposite side is sqrt(x^2-a^2)x2a2.

So, tanthetatanθ would be opposite over adjacent, or sqrt(x^2-a^2)/ax2a2a.

=lnabs(x/a+sqrt(x^2-a^2)/a)+C=lnxa+x2a2a+C

Note that a 1/a1a term can be factored from both of these, which can then be removed from the logarithm as a constant: log(AB)=log(A)+log(B)log(AB)=log(A)+log(B). The ln(1/a)ln(1a) constant will be absorbed into CC.

=lnabs(x+sqrt(x^2-a^2))+C=lnx+x2a2+C