How do you integrate 19x26x+2 using trigonometric substitution?

1 Answer
Mar 13, 2018

The answer is =13ln((3x1)+(3x1)2+1)+C

Explanation:

Let complete the square in the denominator

9x26x+2=9x26x+1+21=(3x1)2+1

Perform the substitution

u=3x1, , du=3dx

Therefore,

dx9x26x2=13duu2+1

Let u=tanθ, , du=sec2θdθ

Therefore,

dx9x26x2=13sec2θdθsecθ

=13secθdθ

=13secθ(secθ+tanθ)dθsecθ+tanθ

Let v=secθ+tanθ

dv=(sec2θ+secθtanθ)dθ

So,

dx9x26x2=13dvv

=13lnv

=13ln(secθ+tanθ)

=13ln(u+u2+1)

=13ln((3x1)+(3x1)2+1)+C