How do you find the integral int1/(x^2*sqrt(x^2-9))dx1x2x29dx ?

1 Answer
Aug 29, 2014

=1/(9x)*sqrt(x^2-9)+c=19xx29+c, where cc is a constant

Explanation :

=int1/(x^2sqrt(x^2-9))dx=1x2x29dx

=int1/(x^3sqrt(1-9/x^2))dx=1x319x2dx

Using Integration by Substitution,

let's assume 3/x=t3x=t, -3/x^2dx=dt3x2dx=dt

=int-t/(9sqrt(1-t^2))dt=-1/9intt/(sqrt(1-t^2))dt=t91t2dt=19t1t2dt

again assuming t^2=zt2=z, 2tdt=dz2tdt=dz

=-1/9int1/2*dz/sqrt(1-z)=1912dz1z

=-1/18int1/sqrt(1-z)dz=11811zdz

=-1/18int(1-z)^(-1/2)dz=118(1z)12dz

=1/18*(1-z)^(1/2)/(1/2)+c=118(1z)1212+c, where cc is a constant

Substituting value of zz and tt back,

=1/9sqrt(1-9/x^2)+c=1919x2+c, where cc is a constant

=1/(9x)*sqrt(x^2-9)+c=19xx29+c, where cc is a constant