How do you Integrate cosx/(sinx)^2+sinxcosx(sinx)2+sinx?

1 Answer
Mar 6, 2015

The required integral is

I = int[cosx/(sinx)^2 + sinx]dxI=[cosx(sinx)2+sinx]dx

This can be evaluated as two separate integrals,

I = I_1 + I_2I=I1+I2 , where I_1 = intcosx/(sinx)^2dxI1=cosx(sinx)2dx and I_2 = intsinxdxI2=sinxdx

The solution of I_2I2 is trivial,

I_2 = intsinxdx = -cosx + C_2I2=sinxdx=cosx+C2

For I_1:I1:

Let sinx = tsinx=t

Differentiating with respect to t,

cosxdx/dt = 1cosxdxdt=1

=> cosxdx = dtcosxdx=dt

This transforms I_1I1 to

I_1 = int1/t^2dtI1=1t2dt

which has the simple solution of

I_1 = -1/t + C_1I1=1t+C1

Replacing the value of t = sinxt=sinx

I_1 = -1/sinx + C_1I1=1sinx+C1

Combining both solutions,

I = I_1 + I_2I=I1+I2
=> I = -1/sinx + C_1 -cosx + C_2I=1sinx+C1cosx+C2

The constants of integration C_1C1 and C_2C2 can be added without affecting the solution.

Finally, the answer is

I = -1/sinx -cosx + CI=1sinxcosx+C