How do you find the integral of (x^2)/(sqrt(4-(9(x^2))) x24(9(x2))?

1 Answer
Jul 14, 2015

int x^2/sqrt(4-9x^2)dx=-1/18xsqrt(4-9x^2)-2/27cos^(-1)((3x)/2)+cx249x2dx=118x49x2227cos1(3x2)+c

Explanation:

For this problem to make sense 4-9x^2>=049x20, so -2/3<=x<=2/323x23. Therefore we can choose a 0<=u<=pi0uπ such that x=2/3cosux=23cosu. Using this, we can subsitute the variable x in the integral using dx=-2/3sinududx=23sinudu: int x^2/sqrt(4-9x^2)dx=-4/27intcos^2u/(sqrt(1-cos^2u))sinudu=-4/27intcos^2udux249x2dx=427cos2u1cos2usinudu=427cos2udu here we use that 1-cos^2u=sin^2u1cos2u=sin2u and that for 0<=u<=pi0uπ sinu>=0sinu0.

Now we use integration by parts to find intcos^2udu=intcosudsinu=sinucosu-intsinudcosu=sinucosu+intsin^2u=sinucosu+intdu-intcos^2udu=sinucosu+u+c-intcos^2udu. Therefore intcos^2udu=1/2(sinucosu+u+c).

So we have found int x^2/sqrt(4-9x^2)dx=-2/27(sinucosu+u+c), now we substitute x back for u, using u=cos^(-1)((3x)/2), so int x^2/sqrt(4-9x^2)dx=-1/9xsin(cos^(-1)((3x)/2))-2/27cos^(-1)((3x)/2)+c.

We can further simplify this by using the definition of sines and cosines in terms of triangles. For a right triangle with an angle u at one of the non-right corners, sinu="opposite side"/"longest side", while cosu="adjacent side"/"longest side", since we know cosu=(3x)/2, we can pick the adjacent side to be 3x and the longest side to be 2. Using Pythagoras' theorem, we find the opposite side to be sqrt(4-9x^2), so sin(cos^(-1)((3x)/2))=sinu=1/2sqrt(4-9x^2). Therefore int x^2/sqrt(4-9x^2)dx=-1/18xsqrt(4-9x^2)-2/27cos^(-1)((3x)/2)+c.