What is #int 23/sqrt(13+3x^2) dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Tom Nov 12, 2015 #23int1/sqrt(13+3x^2)dx# #x = sqrt(13/3)u# #dx = sqrt(13/3)du# #u = sqrt(3/13)x# #23sqrt(13/3)int 1/sqrt(13+13u^2)du # #23sqrt(13/3)*sqrt(1/13)int 1/sqrt(1+u^2)du # #23sqrt(1/3)[arcsinh(u)]+C# Substitute back #23sqrt(1/3)[arcsinh(sqrt(3/13)x)]+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1502 views around the world You can reuse this answer Creative Commons License