What is the equation of the tangent line of r=cos(theta-pi/2)/sintheta - sin(2theta-pi)r=cos(θπ2)sinθsin(2θπ) at theta=(-3pi)/8θ=3π8?

1 Answer
Jan 12, 2016

Equation of tangent line:

frac{y+1/2*sqrt{{2-sqrt2}/2}}{x-(2-sqrt2)^{3/2}/4}=-sqrt{19+6sqrt{2}}y+12222x(22)324=19+62

Explanation:

The equation can be simplified to

r = 1 + sin(2theta)r=1+sin(2θ)

using trigonometric identities.

The polar plot is shown here

enter image source here

http://www.wolframalpha.com/input/?i=r%3D1%2Bsin%282theta%29

To find the tangent line, you need to know a point it passes though and its gradient, frac{dy}{dx}dydx

We know that at theta=-{3pi}/8θ=3π8,

x=rcosthetax=rcosθ

= (1+sin(2(-{3pi}/8)))cos(-{3pi}/8)=(1+sin(2(3π8)))cos(3π8)

= (2-sqrt2)^{3/2}/4=(22)324

~~ 0.1120.112

y=rsinthetay=rsinθ

= (1+sin(2(-{3pi}/8)))sin(-{3pi}/8)=(1+sin(2(3π8)))sin(3π8)

= -1/2*sqrt{{2-sqrt2}/2}=12222

~~ -0.2710.271

The tangent line passes through (0.112,-0.271)(0.112,0.271).

We also know that at theta=-{3pi}/8θ=3π8,

frac{dx}{d theta} = frac{d}{d theta}(r sintheta)dxdθ=ddθ(rsinθ)

= frac{d}{d theta}((1+sin(2theta))*cos(theta))=ddθ((1+sin(2θ))cos(θ))

= frac{-2sin(theta)+cos(theta)+3cos(3theta)}{2}=2sin(θ)+cos(θ)+3cos(3θ)2

Substituting theta=-{3pi}/8θ=3π8, we have

frac{dx}{d theta}_{theta=-{3pi}/8} = -1/2*sqrt{{2-sqrt2}/2}dxdθθ=3π8=12222

~~ -0.2710.271

Similarly,

frac{dy}{d theta} = frac{d}{d theta}(r sintheta)dydθ=ddθ(rsinθ)

= frac{d}{d theta}((1+sin(2theta))*sin(theta))=ddθ((1+sin(2θ))sin(θ))

= 2sin(theta)cos(2theta) + (sin(2theta)+1)*cos(theta)=2sin(θ)cos(2θ)+(sin(2θ)+1)cos(θ)

Substituting theta=-{3pi}/8θ=3π8, we have

frac{dy}{d theta}_{theta=-{3pi}/8} = 1/2*sqrt{frac{26-7sqrt{2}}{2}}dydθθ=3π8=1226722

~~ 1.421.42

From the chain rule, we can calculate the gradient as

frac{dy}{dx} = frac{ frac{dy}{d theta} }{ frac{dx}{d theta} }dydx=dydθdxdθ

= -sqrt{19+6sqrt{2}}=19+62

~~ 5.245.24

Equation of tangent line:

frac{y-(-1/2*sqrt{{2-sqrt2}/2})}{x-(2-sqrt2)^{3/2}/4}=-sqrt{19+6sqrt{2}}y(12222)x(22)324=19+62