How do you integrate int e^x/sqrt(-e^(2x)-20e^x-96)dx using trigonometric substitution?

1 Answer
Feb 25, 2016

sin^(-1)((e^x+10)/2)+const.

Explanation:

Considering the expression under the radical sign

-(e^x+10)=-e^(2x)-20e^x-100
-> -e^(2x)-20e^x-96=2^2-(e^x+10)

Now we can see a convenient trigonometric substitution such as:

e^x+10=2siny
-> e^x*dx=2cosy*dy

=> int e^x/sqrt(-e^(2x)-20e^x-96)dx=int (2cos y)/sqrt(4-(2siny)^2)dy
=int (cancel(2)cosy)/(cancel(2)sqrt(1-sin^2y))dy=int cancel(cosy)/cancel(cosy)dy=int dy=y+const.

But

2siny=e^x+10 => siny=(e^x+10)/2 => y=sin^(-1)((e^x+10)/2)

Then the result is
sin^(-1)((e^x+10)/2) +const.