How do you integrate int e^x/sqrt(-e^(2x)-20e^x-96)dx using trigonometric substitution?
1 Answer
Feb 25, 2016
Explanation:
Considering the expression under the radical sign
-(e^x+10)=-e^(2x)-20e^x-100
-> -e^(2x)-20e^x-96=2^2-(e^x+10)
Now we can see a convenient trigonometric substitution such as:
e^x+10=2siny
-> e^x*dx=2cosy*dy
=> int e^x/sqrt(-e^(2x)-20e^x-96)dx=int (2cos y)/sqrt(4-(2siny)^2)dy
=int (cancel(2)cosy)/(cancel(2)sqrt(1-sin^2y))dy=int cancel(cosy)/cancel(cosy)dy=int dy=y+const.
But
2siny=e^x+10 =>siny=(e^x+10)/2 =>y=sin^(-1)((e^x+10)/2)
Then the result is