How do you integrate int x^3 / ((sqrt(16+x^2))^3) dxx3(16+x2)3dx using trigonometric substitution?

1 Answer
Feb 25, 2016

sqrt(16+x^2)+16/sqrt(16+x^2)16+x2+1616+x2

Explanation:

Remember that
tan^2 theta+1=sec^2 thetatan2θ+1=sec2θ

For the case is convenient that

x=4tanyx=4tany
dx=4sec^2 y *dydx=4sec2ydy

Then

int x^3/(sqrt(16+x^2))^3dx=int (64tan^3 y)/(sqrt(16+16tan^2 y))^3*4sec^2y* dyx3(16+x2)3dx=64tan3y(16+16tan2y)34sec2ydy
=int (256 tan^3 y*sec^2 y)/(4sec y)^3dy=int (4 tan^3 y)/sec y dy=256tan3ysec2y(4secy)3dy=4tan3ysecydy
=4*int sin^3 y/cos^3 y*cos y*dy=4int sin y/cos^2 y*(1-cos^2 y) dy=4sin3ycos3ycosydy=4sinycos2y(1cos2y)dy
=4int sin y/cos^2 y*dy-4int sin y*dy=4sinycos2ydy4sinydy [A]

-> int sin y/cos^2 y*dy=sinycos2ydy=
Making cos y=zcosy=z and -sin y*dy=dzsinydy=dz
=- int dz/z^2=1/z=1/cos y=dzz2=1z=1cosy

Inserting the result above in expression [A]:
=4/cos y+4cos y +const.=4cosy+4cosy+const. [B]

But

4tan y=x4tany=x => siny=x/4*cos ysiny=x4cosy
-> cos^2 y+sin^2 y = 1cos2y+sin2y=1 => cos^2 y+x^2/16*cos^2 y=1cos2y+x216cos2y=1 => (1+x^2/16)cos^2 y=1(1+x216)cos2y=1 => cos y=sqrt(16/(16+x^2))=4/sqrt(16+x^2)cosy=1616+x2=416+x2

Inserting the result above in expression [B]:

=cancel(4)/(cancel(4)/sqrt(16+x^2))+4*4/sqrt(16+x^2)+const.
=sqrt(16+x^2)+16/sqrt(16+x^2)+const.