What is int 1 / (25 + x^2 ) dx?

2 Answers
Mar 5, 2016

1/5Tan^-1(x/5)+c

Explanation:

int1/(25+x^2)dx

=intdx/(5^2+x^2)

=I

We use the rule:

intdx/(a^2+x^2)=1/aTan^-1(x/a)+c

Here a=5

implies I=1/5Tan^-1(x/5)+c

Sep 16, 2016

1/5arctan(x/5)+C

Explanation:

Alternatively, apply the substitution x=5tan(y). Note that this implies that dx=5sec^2(y)dy.

intdx/(25+x^2)=int(5sec^2(y)dy)/(25+25tan^2(y))=1/5int(sec^2(y)dy)/(1+tan^2(y))

Using the identity 1+tan^2(y)=sec^2(y):

=1/5int(sec^2(y)dy)/(sec^2(y))=1/5intdy=1/5y+C

From x=5tan(y) we see that y=arctan(x/5):

=1/5arctan(x/5)+C