Question #67a77

1 Answer
Aug 1, 2016

z11=32+32i

Explanation:

De Moivre's Theorem states that for complex number

z=r(cosθ+isinθ)

zn=rn(cos(nθ)+isin(nθ))

So we need to get our complex number into modulus-argument form.

For z=x+yi

r=x2+y2andθ=tan1(yx) (usually!)

I say usually because the number may be in a different quadrant and require some action.

r=12+12=2

θ=tan1(11)=πtan1(1)=3π4

So z=2(cos(3π4)+isin(3π4))

z11=(2)11(cos(33π4)+isin(33π4))

z11=2112(cos(π4)+isin(π4))

z11=2112(12+12i)=2112(212+212i)

z11=211212+211212i=25+25i

z11=32+32i