What is the slope of the polar curve f(theta) = sectheta - csctheta f(θ)=secθ−cscθ at theta = (5pi)/4θ=5π4?
2 Answers
Sep 3, 2017
See the answer below:
Sep 4, 2017
Explanation:
r=f(theta)=sectheta-cscthetar=f(θ)=secθ−cscθ
We want
To find the slope in terms of
So here,
{(x=(sectheta-csctheta)costheta=1-cottheta),(y=(sectheta-csctheta)sintheta=tantheta-1):}
Note that
{(dx/(d theta)=d/(d theta)(1-cottheta)=csc^2theta),(dy/(d theta)=d/(d theta)(tantheta-1)=sec^2theta):}
So:
dy/dx=(dy/(d theta))/(dx/(d theta))=sec^2theta/csc^2theta=tan^2theta
So the slope at
m=tan^2((5pi)/4)=(-1)^2=1