What is the slope of the polar curve f(theta) = sectheta - csctheta f(θ)=secθcscθ at theta = (5pi)/4θ=5π4?

2 Answers

See the answer below:
enter image source here

Sep 4, 2017

11

Explanation:

r=f(theta)=sectheta-cscthetar=f(θ)=secθcscθ

We want dy/dxdydx of this curve at theta=(5pi)/4θ=5π4.

To find the slope in terms of xx and yy, we have to use the identities {(x=rcostheta),(y=rsintheta):}

So here,

{(x=(sectheta-csctheta)costheta=1-cottheta),(y=(sectheta-csctheta)sintheta=tantheta-1):}

Note that dy/dx=(dy/(d theta))/(dx/(d theta)).

{(dx/(d theta)=d/(d theta)(1-cottheta)=csc^2theta),(dy/(d theta)=d/(d theta)(tantheta-1)=sec^2theta):}

So:

dy/dx=(dy/(d theta))/(dx/(d theta))=sec^2theta/csc^2theta=tan^2theta

So the slope at theta=(5pi)/4 is:

m=tan^2((5pi)/4)=(-1)^2=1