What is the slope of the polar curve f(theta) = theta^2-theta - cos^3theta + tan^2theta at theta = pi/4?
1 Answer
The slope is:
Explanation:
The slope will be given by
To get the equation in terms of
So here, where
x=costheta(theta^2-theta-cos^3theta+tan^2theta)
color(white)x=theta^2costheta-thetacostheta-cos^4theta+tanthetasintheta
y=sintheta(theta^2-theta-cos^3theta+tan^2theta)
color(white)y=theta^2sintheta-thetasintheta-cos^3thetasintheta+sinthetatan^2theta
To find
dx/(d theta)=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+sec^2thetasintheta+tanthetacostheta
color(white)(dx/(d theta))=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+tanthetasectheta+sintheta
dy/(d theta)=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+costhetatan^2theta+2sinthetatanthetasec^2theta
color(white)(dy/(d theta))=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+sinthetatantheta+2tan^2thetasectheta
Now we can find
Just so we don't have to write out a giant fraction, let's evaluate
dx/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2+pi/4 1/sqrt2+4 1/(2sqrt2)1/sqrt2+2 1/sqrt2+1 1/sqrt2
color(white)(dx/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)+pi/(4sqrt2)+1+sqrt2
color(white)(dx/(d theta))=1/(16sqrt2)(pi^2+12pi+16sqrt2+32)
dy/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2-pi/4 1/sqrt2+3 1/2 1/2-1/4+1/sqrt2 1+2*1sqrt2
color(white)(dy/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)-pi/(4sqrt2)+1/2+2sqrt2
color(white)(dy/(d theta))=1/(16sqrt2)(pi^2+4pi+8sqrt2+64)
Thus, at
dy/dx=(dy//d theta)/(dx//d theta)=(pi^2+4pi+8sqrt2+64)/(pi^2+12pi+16sqrt2+32)approx0.9564910