What is the slope of the polar curve f(theta) = theta^2-theta - cos^3theta + tan^2theta at theta = pi/4?

1 Answer
Sep 4, 2017

The slope is: (pi^2+4pi+8sqrt2+64)/(pi^2+12pi+16sqrt2+32)approx0.9564910

Explanation:

The slope will be given by dy/dx of the curve evaluated at theta=pi/4.

To get the equation in terms of x and y, we should use the polar-to-rectangular identities: {(x=rcostheta),(y=rsintheta):}

So here, where r=f(theta), we have:

x=costheta(theta^2-theta-cos^3theta+tan^2theta)

color(white)x=theta^2costheta-thetacostheta-cos^4theta+tanthetasintheta

y=sintheta(theta^2-theta-cos^3theta+tan^2theta)

color(white)y=theta^2sintheta-thetasintheta-cos^3thetasintheta+sinthetatan^2theta

To find dy/dx, we first need to find dx/(d theta) and dy/(d theta). This will take a fair amount of product and chain rule, so be careful.

dx/(d theta)=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+sec^2thetasintheta+tanthetacostheta

color(white)(dx/(d theta))=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+tanthetasectheta+sintheta

dy/(d theta)=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+costhetatan^2theta+2sinthetatanthetasec^2theta

color(white)(dy/(d theta))=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+sinthetatantheta+2tan^2thetasectheta

Now we can find dy/dx using dy/dx=(dy//d theta)/(dx//d theta).

Just so we don't have to write out a giant fraction, let's evaluate dx/(d theta) and dy/(d theta) at theta=pi/4 separately.

dx/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2+pi/4 1/sqrt2+4 1/(2sqrt2)1/sqrt2+2 1/sqrt2+1 1/sqrt2

color(white)(dx/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)+pi/(4sqrt2)+1+sqrt2

color(white)(dx/(d theta))=1/(16sqrt2)(pi^2+12pi+16sqrt2+32)

dy/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2-pi/4 1/sqrt2+3 1/2 1/2-1/4+1/sqrt2 1+2*1sqrt2

color(white)(dy/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)-pi/(4sqrt2)+1/2+2sqrt2

color(white)(dy/(d theta))=1/(16sqrt2)(pi^2+4pi+8sqrt2+64)

Thus, at theta=pi/4, the slope is:

dy/dx=(dy//d theta)/(dx//d theta)=(pi^2+4pi+8sqrt2+64)/(pi^2+12pi+16sqrt2+32)approx0.9564910