intx^2/sqrt(4x+25)dx
Let x = 5/2 tan A, dx = (5/2 sec^2a)dA
=intx^2/sqrt(4x+25)dx = int (5/2)^2(tan^2A sec^2A) /(sqrt(4(5/2)^2tan^2A+25)dA
=intx^2/sqrt(4x+25)dx = int (5/2)^2(tan^2A sec^2A) /(sqrt(25tan^2A+25)dA
=intx^2/sqrt(4x+25)dx = int (5/2)^2(tan^2A sec^2A) /5(sqrt(tan^2A+1))dA
sec^2A-1= tan^2A
= int (5/4)(tan^2A sec^2A) /(sqrt(sec^2A))dA
= int (5/4)((sec^2A-1) sec^2A) /(sqrt(sec^2A))dA
= int (5/4)((sec^3A-secA)) dA
= (5/4)(int(sec^3A)-int(secA)) dA -------- equation (1)
We need to find
int(secA) dA = int sec A(secA + tanA)/(secA+tanA)dA
=int sec A(sec^2A + tanAsecA)/(secA+tanA)dA
Let B= secA+tanA
dB= (secAtanA+sec^2A) dA
=int1/BdB
=ln |B|+c
=ln |secA+tanA|+c -----equation 2
We now need to find
int(sec^3A) dA
Integrate by parts
int sec^2AsecA dA
Let C= secA
dC= secAtanAdA
dD= sec^2A dA
D= int sec^2A dA =tanA + const
Using by parts gives
=int sec^2AsecA dA = CD - int DdC/dA
=secAtanA - int secAtanAtanA dA
=secAtanA - int (sec^2A-1)secA dA
=secAtanA - int (sec^3A-secA) dA
int sec^3AsecA dA=secAtanA - (int sec^3A -int secA) dA
substituting using equation 2
2int sec^3A dA = secAtanA+ ln|secA+tanA)
1/2(secAtanA+ ln|secA+tanA)) ----equation 3
From equation 1 we had
intx^2/sqrt(4x+25)dx = (5/4)(int(sec^3A)-int(secA)) dA
using the results from equations 2 and 3
=5/4((1/2(secAtanA + ln|(SecA+tanA)|))-ln|(SecA+tanA)|)
=5/8(secAtanA + -ln|(SecA+tanA)|))
Now convert everything back to x
x=5/2 tan A, tan A=2/5x, tan^2A=(2/5)^2x^2
sec^2A = tan^2A +1 =(4x^2+25)/25
secA = =sqrt((4x^2+25)/(25))= sqrt(4x+25)/5
1/20(sqrt(4x+25))x - 5/8ln(sqrt((4x+25))/(5)+2/5x)