How do you simplify i^100i100?

2 Answers
Apr 25, 2018

i^100=1i100=1

Explanation:

i^100=(i^2)^50i100=(i2)50

From the fact that i^2=-1,i2=1, we get

(-1)^50=1(1)50=1 as -11 raised to any even power is 1.1.

Alternatively, we can rewrite in trigonometric form and then in the form re^(itheta)reiθ:

i=cos(pi/2)+isin(pi/2)i=cos(π2)+isin(π2)

=e^(ipi/2)=eiπ2

Raise the exponential to the power of 100:100:

(e^(ipi/2))^100=e^(50pi)(eiπ2)100=e50π

=cos(50pi)+isin(50pi)=cos(50π)+isin(50π)

=cos2pi+isin2pi=cos2π+isin2π

cos2pi=1, sin2pi=0cos2π=1,sin2π=0

so we get

=1=1

Apr 25, 2018

i^100=1i100=1

Explanation:

i^100=(i^2)^50=(-1)^50=1i100=(i2)50=(1)50=1

(-a)^n=a^n(a)n=an, where n is an even number.