How do you integrate int 1/sqrt(3x-12sqrtx-21) 13x12x21 using trigonometric substitution?

1 Answer
May 24, 2018

2/sqrt3(x-4sqrtx-7)+4/sqrt3ln(sqrtx+2+sqrt(x-4sqrtx-7))+C23(x4x7)+43ln(x+2+x4x7)+C

Explanation:

intdx/sqrt(3x-12sqrtx-21)dx3x12x21

I've added the differential dxdx to your integrand. While it may seem like a fanciful calculus accessory, it's actually very important, especially when doing trig sub problems.

First, let's get this into a more "normal" form for trig subs. Let x=t^2x=t2. Note this implies that dx=2tdtdx=2tdt and that sqrtx=tx=t.

=int(2tdt)/sqrt(3t^2-12t-21)=2tdt3t212t21

Now complete the square in the denominator:

=2intt/sqrt(3(t^2-4t+4)-21-12)dt=2t3(t24t+4)2112dt

=2intt/sqrt(3(t-2)^2-33)dt=2t3(t2)233dt

=2/sqrt3intt/sqrt((t-2)^2-11)dt=23t(t2)211dt

This is optional, but now I'd let s=t-2s=t2. This implies that ds=dtds=dt and that t=s+2t=s+2.

=2/sqrt3int(s+2)/sqrt(s^2-11)ds=23s+2s211ds

Now, to clear the denominator, I'd let s=sqrt11secthetas=11secθ.

My reason for this substitution is that s^2-11=11sec^2theta-11=11(sec^2theta-1)=11tan^2thetas211=11sec2θ11=11(sec2θ1)=11tan2θ. This will clear out our denominator.

Moreover, note that ds=sqrt11secthetatanthetad thetads=11secθtanθdθ. Proceeding:

=2/sqrt3int(sqrt11sectheta+2)/sqrt(11tan^2theta)(sqrt11secthetatanthetad theta)=2311secθ+211tan2θ(11secθtanθdθ)

=2/sqrt3int(sqrt11sectheta+2)/(sqrt11tantheta)(sqrt11secthetatanthetad theta)=2311secθ+211tanθ(11secθtanθdθ)

=2/sqrt3int(sqrt11sectheta+2)secthetad theta=23(11secθ+2)secθdθ

=2/sqrt3int(sqrt11sec^2theta+2sectheta)d theta=23(11sec2θ+2secθ)dθ

These are two fairly well known integrals. You may need to look the second one up.

=2/sqrt3(sqrt11tantheta+2ln(abs(sectheta+tantheta)))=23(11tanθ+2ln(|secθ+tanθ|))

Recall that s=sqrt11secthetas=11secθ, so sectheta=s/sqrt11secθ=s11. Moreover, tantheta=sqrt(sec^2theta-1)=sqrt(s^2/11-1)=sqrt((s^2-11)/11)tanθ=sec2θ1=s2111=s21111. Then:

=2sqrt(11/3)sqrt((s^2-11)/11)+4/sqrt3ln(abs(s/sqrt11+sqrt((s^2-11)/11)))=2113s21111+43ln(s11+s21111)

Do some more simplifications. Remember the log rule log(A//B)=log(A)-log(B)log(A/B)=log(A)log(B).

=2/sqrt3sqrt(s^2-11)+4/sqrt3ln(abs(s+sqrt(s^2-11)))-4/sqrt3lnsqrt11=23s211+43ln(s+s211)43ln11

Now use s=t-2s=t2 and t=sqrtxt=x, so s=sqrtx-2s=x2;

=2/sqrt3((sqrtx-2)^2-11)+4/sqrt3ln(abs(sqrtx-2+sqrt((sqrtx-2)^2-11)))-4/sqrt3lnsqrt11=23((x2)211)+43ln(x2+(x2)211)43ln11

=2/sqrt3(x-4sqrtx-7)+4/sqrt3ln(sqrtx+2+sqrt(x-4sqrtx-7))+C=23(x4x7)+43ln(x+2+x4x7)+C

I've added the constant of integration, into which the 4/sqrt3lnsqrt1143ln11 term has been absorbed.

The absolute value bars are also unnecessary because the argument of the natural log function is, by necessity, greater than 22 and always positive.