Integrate using trigo substitution int dx/(sqrt(x^2-4x))^3dx(x24x)3 ?

1 Answer
Jul 14, 2018

(2-x)/(4sqrt((x-4)x)+C2x4(x4)x+C

Explanation:

At first we Substitute u=x-2,du=dxu=x2,du=dx

and we get

int1/(u^2-4)^(3/2)du1(u24)32du
now we substitue u=2sec(s),du=2tan(s)sec(s)dsu=2sec(s),du=2tan(s)sec(s)ds

then we get
1/4int cot(s)csc(s)ds=-csc(s)/4+C14cot(s)csc(s)ds=csc(s)4+C
with

s=sec(-1)(u/2)s=sec(1)(u2) we get

-1/4csc(sec^(-1)(u/2))+C14csc(sec1(u2))+C
note that

csc(sec^(-1)(z))=1/sqrt(1-1/z^2)csc(sec1(z))=111z2 then we get

-u/(4sqrt(u^2-4))+Cu4u24+C
with u=x-2u=x2

we get the result
(2-x)/(4sqrt((x-4)x)+C2x4(x4)x+C