#I=int(e^x-1)/sqrt(e^(2x)-16)dx#
Let #X=e^x#
#x=ln(X)#
#dx=(dX)/X#
So:
#I=int(X-1)/(Xsqrt(X^2-16))dX#
#=int(cancel(X))/(cancel(X)sqrt(X^2-16))dX-int1/(Xsqrt(X^2-16))dX#
Now let #X=4sec(theta)#
#dX=4sec(theta)tan(theta)d theta#
So :
#I=int(4sec(theta)tan(theta))/sqrt((4sec(theta))^2-16)d theta-int(cancel(4sec(theta))tan(theta))/(cancel(4sec(theta))sqrt((4sec(theta))^2-16))d theta#
#=int(4sec(theta)tan(theta))/sqrt(16(sec(theta)^2-1))d theta-int(tan(theta))/sqrt(16(sec(theta)^2-1))d theta#
Because #sec(theta)^2-1=tan(theta)^2#,
#I=int(cancel(4)sec(theta)cancel(tan(theta)))/(cancel(4tan(theta)))d theta-intcancel(tan(theta))/(4cancel(tan(theta)))d theta#
#=intsec(theta)d theta-1/4int1d theta#
Now, we have #intsec(theta)d theta=ln(|sec(theta)+tan(theta)|)#
[Here is a proof if you need the explanation.](https://socratic.org/questions/what-is-the-integral-of-sec-x?)
So :
#I=ln(|sec(theta)+tan(theta)|)-1/4theta#
Because #theta=sec^(-1)(X/4)=sec^(-1)(e^x/4)#, and #tan(sec^(-1)(u))=sqrt(u^2-1)#, where #u# is a function ([here is a proof if you need it.](https://socratic.org/questions/how-to-simplify-tan-sec-1-x)),
#I=ln(|e^x/4+sqrt(e^(2x)/16-1)|)-1/4sec^(-1)(e^x/4)+C#, #C in RR#.
\0/ Here's our answer !