I=intx^3sqrt(-x^2-8x-41)dx
=iintx^3sqrt(x^2+8x+41)dx
Complete the square:
I=iintx^3sqrt((x+4)^2+25)dx
=iintx^3sqrt((x+4)^2+5^2)dx
Now let x+4=5tan(theta)
dx=5sec(theta)^2d theta
So:
I=iint(5tan(theta)-4)^3sqrt(5^2(tan(theta)^2+1))*5sec(theta)^2d theta
Because tan(theta)^2+1=sec(theta)^2
=5iint(5tan(theta)-4)^3*5sec(theta)^3d theta
=25iint(5tan(theta)-4)^3sec(theta)^3d theta
Now, (a-b)^3=a^3-3a^2b+3ab^2-b^3, and here, a=5tan(theta), b=4
So:
I=5^2iint(5^3tan(theta)^3-5^2*12tan(theta)^2+5*48tan(theta)-64)sec(theta)^3d theta
=5^5iinttan(theta)^3sec(theta)^3d theta-5^4*12iinttan(theta)^2sec(theta)^3d theta+5^3*48iinttan(theta)sec(theta)^3d theta-5^2*64iintsec(theta)^3d theta
Well, at this point, you have a sum of defined integral, you just have to sum
( click on each integral to see explanations associated ).
I=5^5i*(1/5sec(theta)^5−1/3sec(theta)^3)-5^4*3/2i(2sec(theta)^3tan(theta)-sec(theta)tan(theta)-ln(|sec(theta)+tan(theta)|))+16isec(theta)^3-5^2*32i(sec(theta)tan(theta)+ln(|sec(theta)+tan(theta)|)+C, C in RR
Finally, theta=tan^(-1)((x+4)/5), and sec(tan^(-1)(u))=sqrt(u^2+1), here u=(x+4)/5
I let you find what is the writing of I using x and not theta, it's very long but easy.
\0/ Here's our answer !