Question #d0a78

1 Answer
Mar 29, 2017

L=dx2+dy2

Explanation:

L=(dxdθ)2+(dydθ)2dθ
L=(drcosθdθ)2+(drsinθdθ)2dθ
L=(drdθ)2+r2dθ
now
r=2(1+cos(θ))
so
drdθ=2sin(θ)
r2=4(1+2cosθ+cos2θ)
Adding yields
4sin2θ+4cos2θ+4+8cosθ=8(1+cosθ)=16cos2(θ2)
so
L=4cos(θ2)dθ
L=8sin(θ2)