How do you find the 3rd root of 8e^(45i)8e45i?

1 Answer
Aug 24, 2016

Roots are 2[cos (pi/12) +isin(pi/12)], 2[cos ((3pi)/4) +((isin(3pi))/4)] & 2[cos ((17pi)/12) +((isin(17pi))/12)]2[cos(π12)+isin(π12)],2[cos(3π4)+(isin(3π)4)]&2[cos(17π12)+(isin(17π)12)]

Explanation:

8e^(45i)=8(cos45+isin45)=8(cos (pi/4)+isin(pi/4)):. 1st root: [8(cos pi/4)+(isinpi/4)]^(1/3)= 8^(1/3)[ cos (pi/(4*3)) +isin(pi/(4*3)]=2[cos (pi/12) +isin(pi/12)] :.for 2nd root (2pi)/3 to be added to the angle i.e theta=(pi/12+(2pi)/3)=(9pi)/12=(3pi)/4:.2nd root is 2[cos ((3pi)/4) +((isin(3pi))/4)]
for 3rd root (2pi)/3 to be added to the angle i.e theta=((3pi)/4+(2pi)/3)=(17pi)/12:.3rd root is 2[cos ((17pi)/12) +((isin(17pi))/12)][Ans]