How do you find the cube roots of 125?

1 Answer
Sep 8, 2016

5(12+i32),5,5(12i32)

Explanation:

Using the de Moivre's identity

125=53ei(π+2kπ),k=0,±1,±2, because

ei(π+2kπ)=cos(π+2kπ)+isin(π+2kπ)=1

so

(125)13=(53ei(π+2kπ))13=5eiπ+2kπ3

for k=0,k=±1 we have

5eiπ3,5eiπ,5eiπ3

or

5(12+i32),5,5(12i32)