How do you find the cube roots of 8(cos(2π3)+isin(2π3))?

1 Answer
Oct 2, 2016

Cube roots of [8(cos(2π3)+isin(2π3))] are 2(cos(2π9)+isin(2π9))
2(cos(8π9)+isin(8π9)) and
2(cos(14π9)+isin(14π9))

Explanation:

Accoding to De Moivre's theorem

If z=r(cosθ+isinθ)

zn=rn(cosnθ+isinnθ)

Here [8(cos(2π3)+isin(2π3))]13

= 813(cos(2π33)+isin(2π33)]

= 2(cos(2π9)+isin(2π9))

But this is only one cube root of [8(cos(2π3)+isin(2π3))]13

for others we have

2[cos(2π+2π33)+isin(2π+2π33)] i.e.2(cos(8π9)+isin(8π9)) and

2[cos(4π+2π33)+isin(4π+2π33)] i.e.2(cos(14π9)+isin(14π9))