128(-1+i) = 128sqrt2(-1/sqrt2 + i (1/sqrt2))128(−1+i)=128√2(−1√2+i(1√2))
=> 128sqrt2 (-cos (pi/4) + i sin (pi/4))⇒128√2(−cos(π4)+isin(π4))
=> 128 sqrt2 (cos (135) + i sin (135))⇒128√2(cos(135)+isin(135))
root(5) (128sqrt2 (cos 135 + i sin 135)5√128√2(cos135+isin135)
=> (128sqrt2)^(1/5) (cos (135/5) + i sin (135/5))⇒(128√2)15(cos(1355)+isin(1355))
=> (sqrt8 * (cos 27 + i sin 27)⇒(√8⋅(cos27+isin27) as
(128 sqrt2)^(1/5) = (2^7 * sqrt 2)^(1/5) = (sqrt2)^(15/5) = sqrt8(128√2)15=(27⋅√2)15=(√2)155=√8