How do you find the fifth roots of 128(-1+i)128(1+i)?

1 Answer
Jun 14, 2018

color(purple)(=> (sqrt8 * (cos 27 + i sin 27)(8(cos27+isin27)

Explanation:

128(-1+i) = 128sqrt2(-1/sqrt2 + i (1/sqrt2))128(1+i)=1282(12+i(12))

=> 128sqrt2 (-cos (pi/4) + i sin (pi/4))1282(cos(π4)+isin(π4))

=> 128 sqrt2 (cos (135) + i sin (135))1282(cos(135)+isin(135))

root(5) (128sqrt2 (cos 135 + i sin 135)51282(cos135+isin135)

=> (128sqrt2)^(1/5) (cos (135/5) + i sin (135/5))(1282)15(cos(1355)+isin(1355))

=> (sqrt8 * (cos 27 + i sin 27)(8(cos27+isin27) as

(128 sqrt2)^(1/5) = (2^7 * sqrt 2)^(1/5) = (sqrt2)^(15/5) = sqrt8(1282)15=(272)15=(2)155=8