How do you find the fourth roots of -44?

1 Answer
Aug 10, 2016

4^(1/4)(e^(pi/4i), e^(3pi/4i), e^(5pi/4i), e^(7pi/4i))414(eπ4i,e3π4i,e5π4i,e7π4i)
=+-1+-i=±1±i

Explanation:

Use, #cos (2n+1)pi = -1, n =0, 1, 3, 3, ... and De Moivre's theorem.

(-4)^(1/4) = (4(-1)=4e^((2n+1)pi i))^(1/4), n=0, 1, 2, 3, ...

=4^(1/4)e^(((2n+1)/4)i),n=0, 1, 2, 3, ..,

=4^(1/4)(e^(pi/4i), e^(3pi/4i), e^(5pi/4i), e^(7pi/4i)), repeated in a cycle

=sqet 2/sqrt 2(+-1+-i)

=(+-1+-i)